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Position observables for relativistic systems 

M. LUNN 
Mathematical Institute, Oxford 
MS. received 25th July 1968 

Abstract. An elementary proof of the results of Wightman concerning the existence 
and non-existence of position observables for relativistic systems is presented. The  
method uses an explicitly described unitary transformation to relate the representa- 
tions of the Euclidean group obtained by restricting the m f 0 representations of 
the PoincarC group to representations having position observables. The  position 
observables are displayed explicitly as differential operators in the cases in which 
they exist. 

1. Introduction 
Newton and Wigner (1949) clarified the question of the existence of position observables 

for relativistic particles. They laid down criteria for a state to be localized at a point of 
three-space at a given time, and used the Bargmann-Wigner equations to describe the 
particles. They concluded that particles with strictly positive mass have position observ- 
ables; in the spin-4 case their operators are identical with those obtained by the Foldy 
and Wouthuysen (1950) ‘mean position operators’. The basic idea behind the description 
of the particles is Wigner’s notion of an elementary system as being a set of states forming 
a representation space for an irreducible representation of the inhomogeneous Lorentz 
group ; the Bargmann-Wigner equations were constructed to provide a manifold of solutions 
having just this property. I t  is not evident how the Newton-Wigner argument can be 
made rigorous as it stands. Wightman pointed out that the criteria for the localizability of 
a state at a point should be replaced by criteria for localizability in a region of three-space, 
and that if this is done the question can be settled by reference to the irreducible repre- 
sentations themselves rather than by going through the intermediate step of the Bargmann- 
Wigner equations. This he did in a self-contained paper (Wightman 1962) the major part 
of which was written in 1952. The  essential step was the use of Mackey’s imprimitivity 
theorem (Mackey 1949, 1955) ; independently Mackey realized that his theorem could 
settle questions of localizability in quantum theory and he summarized his treatment 
in his Stillwater Colloquium lectures in 1961 (Mackey 1963). 

It turns out that an irreducible representation of the inhomogeneous Lorentz group is 
localizable in Wightman’s sense if, and only if, its restriction to the Euclidean group is 
unitarily equivalent to the representation 

q u ’  A)f(x) = ~ ( A ) f ( A - Y x  -4) 
on the space of vector-valued square-integrable functions on g3) where a is a translation, 
A a rotation, and D is a representation of the rotation group. In  this paper we describe 
briefly this result and show that an elementary system with mass m, strictly positive, is 
localizable by displaying the unitary equivalence explicitly. The connection with the 
Newton-Wigner work is then clear, and their position observables are obtained explicitly. 

T o  discuss the zero-mass case we again make use of an explicitly stated unitary equiva- 
lence to show that unless the spin is zero the restriction of the representation to the Euclidean 
group is not equivalent to one of the required form. 

2. Localizability 
Following Wightman (1962) and Mackey (1963), we say that a representation U of the 

PoincarC group defines a localizable system if: 
(i) there exists a projection-valued measure P on the Borel sets of three-dimensional 

Euclidean space g3, T o  each Borel set A4 of g3 is associated a projection PM on b( U )  
17 
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satisfying : 

(U) PYMt = 2 P,, whenever Mi n M 3  = 0 for all i , j ,  i # j ,  
z 

(b)  PMnMt = PMPM, = PMtPM, 

( c )  PB3 = I ;  

(ii) = U(cr)P,,U(a)-l, for all a belonging to the Euclidean group 6 ( 3 ) ,  which 
is a subgroup of the Poincark group. 

Equivalently, U defines a localizable system if, and only if, U restricted to 6 ( 3 )  has a 
transitive system of imprimitivity on B3, Using Mackey's method, all unitary repre- 
sentations of 6 ( 3 )  possessing such a system of imprimitivity can be determined. 

Theorem A. A unitary representation U of 6 ( 3 )  has a transitive system of imprimitivity P 
based on three-dimensional Euclidean space if, and only if, it is unitarily equivalent to a 
representation V on L2(B3, b, d3x) (square-integrable functions on B3 with values in b), 
defined by 

V(a,  A)f(x) = %qf(A-Yx -4) 
where 93 is a unitary representation of SO(3) on 0. The system of imprimitivity associated 
with V is given by (P,j)(x) = x,(x)f(x) where xM is the characteristic function of the 
Bore1 set M. 

This result may be found in Wightman (1962) and Mackey (1967). 

3. The representation [m, s] of the Poincare' group, for m > 0 
This representation takes the form 

u(a,  A)f(P) = ~ X P  i b ,  aIQ(P, *>.f(*-'P> 
where (,}  is the Lorentz bracket. Q(p, A) may be expressed as 9S(ApAR,D-1-1) 
where gS is the usual (2s+ 1)-dimensional irreducible representation of SU(2, C) on f),. 
A, is a coset representative of the cosets of SU(2, C) in SL(2, C) and satisfies A,p = K ,  
K = (m, 0, 0, 0). p satisfies (p, p }  = m2 and f is a (2s+ 1)-component function on the 
positive mass hyperboloid p2 = m2, H?, square integrable with respect to the measure 
d3p/p0 =. dp. Thus U is a representation on L2(Hm, Os, dp) (Moussa and Stora 1964). 

Restricting ourselves to the Euclidean group 673) we have, putting A-Ip = q, 

U(& A)f(p) = exp( -iP * a)as(A,AA,-l)f(q). 

Now A IeavespO invariant. We may write A, = &A, where A,p = (m cosh 6,0,0,  m sinh 0) 
and m cosh 0 = PO. h,(m cosh 6,0,0,  m sinh 0) = (m, 0, 0, 0), A, being implemented by 
means of the matrix 

e -e /2  0 

( 0 e.12) 

of SL(2, C). We choose A, to belong to SU(2, C). Thus A,AA,-I belongs to SU(2, C). 
Now (A,AA,-l)(m cosh 8,0,0, m sinh 6) = (m cosh 6,0 ,0 ,  m sinh 0) for all m and 6. Hence 
A,AA,-' is of the form 

( eid:2 0 e-i6/2 O 1 
and thus commutes with A,. We have 

A,AA,-' = A,A,AA,-lAe-l = A,AA,-'. 

Hence this becomes: U(a, A)f(p) = exp( - ip .a)9s(A,AA,-1)f(q). Now consider the 
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mappingf(p) -+ gS(Ap-l)f(p) = +(p) wherep2 = po2 - m2. This is a unitary map. 

g S ( A  P - u(a, 4 w%J{ W A P  - l)f(P)) 

= exp( -ip . a ) ~ s ( ( A p - l ) ~ s ( A p ) ~ S ( A ) ~ S ( A , - l ) f ( q ) .  

If we wfite o(a,  A) = 9 ( A P - l )  U(u, A) g S ( A p )  we see that U restricted to 4 3 )  is unitarily 
equivalent to the representation 0 of 4 3 )  on L2(Hm, b,, dp) given by 

U(a, A)+@) = exp( -ip . a ) B S ( A ) + ( ~ - l p )  

p2 having any positive value, and the measure being 

- dp,  
d3P 

(m2 +p2)l12 PO 
- d3P 

Consider the operator W such that 

( W + ) ( x )  = ( Z T ) - ~ / ~  j +(p) exp(ip . x)po1'2 d3p/p0. 

W is a unitary operator (see appendix 1) from L2(Hm, os, d p  to L2(g3, b,, d3x). Now 

the representation 0 of 4 3 )  and we easily see that O'(U, A)f(x) = 23S(A)j(A-1(x-~)).  
Hence by theorem A of $ 2  0' represents a localizable system and it follows that U also 
represents a localizable system. 

For c' we have that the position observables are represented by multiplication operators 
Xh : 

Therefore 

define O'(a, A)(W+)(x) = (Wo(a, A)+)(x) for all 4. Then d ' is unitarily equivalent to 

Xk(W+)(x) = (W(Qk)Op+)(X)* 

(Qk)op+@) ( W-lXkW+)(P) 
d3p' - 1 e-ip.xXkpOli2 d 3 ~ ~ i r . p '  

( 2 4 3  
Therefore 

when +(p)  is a function in the Hilbert space of the representation c of 6 ( 3 ) .  

4. The representation [0, s] of the Poincare group where s has any half-integral 
value 
The representation [0, s] takes the form U(a, R)f(p) = exp(i{p, a))L(p, A)f(A-'p) where 

p 2  .= 0. L(p, A) may be written as LS(ApRAA,-l-l) where Ls is a representation of the 
universal covering group of 6(2) : 

eid/2 e - i6/2 ) --f exp (is+). ( 0 ,-i6/2 
LS : A(+, z )  = 

Each A, is the representative of a coset of 6(2) in SL(2, C) and satisfiesA,p = n = ( l , O , O ,  1). 
Let (a,  A) belong to 6 ( 3 ) .  Then we have, putting A - l p  = q, 

U(a,  A)f (p)  = exp( -iP ' 4~s((R,AA,-1)f(q).  

We may write A, = ApoA, where App = (PO, 0, O,po) = pOn and Apo(pon) = n, 

bo = (" o-1'2 0 p01/2 O 1 * 
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Then we may choose A, belonging to SU(2, C). In  this case A,AA,-I has the form 

for some 4 and we have 

Ls(APAA,-') = LS(A,~ApAA,-'A,o-l) = L'(A,AA,-'). 

Thus we may write 

wherep2 = po2,  thus taking any positive value, and Ls  is the representation 

74% A ) f ( p )  = exp( -ip 4-W,AA,- ' ) f (q)  

of SO(2). It is now clear that this is the representation JUssm dm of 6 ( 3 ) ,  where Us,m is 
an irreducible representation of 4 3 )  on the sphere m2 = p2.  Usam can be expressed as 
follows : 

where p 2  = m2 Ussm(a, A ) f ( p )  = exp( -ip . U ) L ~ ( A , A A , - ~ ) ~ ( ~ )  
App = ( O , O ,  m) and Ls(A,) = exp(is4). 

Now, consider the representation VSsm N UsJ" @ Us-l$m @ ,,. @ U-"." of 6 ( 3 ) .  We 
have 

where As@, A)  is a diagonal (2s+ 1) x (2s+ 1) matrix with Lj(A,AA,-l),j = s, s -  1, ..., -s, 
as its diagonal entries. I t  follows that if A,AA,-l = A,, As@, A) has diagonal entries 
exp(ij4). Therefore, we know that As@, A )  = 9s(ApAA,-1) where Bs is the (2s+ 1)- 
dimensional irreducible representation of SU(2, C). Thus 

Vs*m(a, A ) f ( p )  = exp( -ip . a)  Bs(Ap) 9s(A)Bs(A,-1) f (q) .  
Now map J(p)  -+ 9s(A,-1)f(p) and we see that Vssm is unitarily equivalent to the repre- 
sentation Vs"(a, A)+@) = exp( - i p .  a) 9(A)4(A-1p)  where p 2  = m2. We have shown 
that the representation 

Us(a, A)+(p) = exp( -ip . U ) L ~ ~ ( A ) + ( A - ~ ~ )  

v/S3m(a, Alf (P)  = exp( -ip . a)AS(p,  A)f (q)  

where p 2  has any value, is unitarily equivalent to the representation 

1 2 @ Ujsmdm 
j =  - s  

where Ui," is the irreducible representation of 4 3 )  defined above. 
From 4 3 we know that any representation of the form V(a, A ) f ( x )  = g(A)f(A-I(x - a)) 

is equivalent to a representation of the form U(a, A)+(p) = exp( - ip .a)  B(A)+(A-lp) and, 
since B is a representation of SU(2, C), it follows that U N EsctsUs where M~ are positive 
integers. 

dm. From the above, it is clear that this 
representation is equivalent to a proper sub-representation of the representation Ui for 
all i 2 Is1 if s # 0. [0, 01 restricted to 6 ( 3 )  is equivalent to Uo. Thus by theorem A [0, s] 
represents a localizable system if, and only if, s = 0. 
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Appendix 
We prove that W, as defined in $ 3 ,  is a unitary operator. For simplicity consider the 

case when s = 0 and + E L2(H,, qo, dp) has a single component. The  following extends 
easily to functions with (2s+ 1) components. 

The  inverse transformation is given by 

(w-lf)(p)  = ( 2 4 - 3 ’ 2  j exp( -ip . x ) P o ~ ’ ~ ~ ( x )  d3x. 

Firstly W is an isometry. Let F be the three-dimensional Fourier transform. Then 

liW+I12 = /W+I2d3x 

The  functions (p01”2hhl(p’)h,(p2)h,(p3)~~,~,n form a basis for L2(Hm, bo, dp), where hi 
is the ith Hermite function of a single variable. 

Hence W has a dense range and thus is a unitary operator 
L2(g3 ,  bo, d3x). 
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